Blind Source Separation Methods Applied to Muscle Artefacts Removing from Epileptic Eeg Recording: A Comparative Study

نویسندگان

  • Amar Kachenoura
  • Doha Safieddine
  • Laurent Albera
  • Gwénaël Birot
  • Fabrice Wendling
  • Lotfi Senhadji
  • Isabelle Merlet
  • Amar kachenoura
چکیده

Electroencephalogram (EEG) recordings are often contaminated with muscle artifacts. These artifacts obscure the EEG and complicate its interpretation or even make the interpretation unfeasible. In this paper, realistic spike EEG signals are simulated from the activation of a 5 cm2 epileptic patch in the left superior temporal gyrus. Background activities and real muscle artifacts are then added to the simulated data. We compare the efficiency of Empirical Mode Decomposition (EMD), Independent Component Analysis (ICA) and Blind Source Separation based on Canonical Correlation Analysis (BSS-CCA) to remove muscle artifacts from the EEG signals. The quantitative comparison indicates that the EMD approach exhibits a better performance than ICA and BSS-CCA, especially in the case of very low Signal to Noise Ratio (SNR). Keys words: ICA, BSS-CCA, EMD, interictal spikes, epilepsy, muscle artefacts removing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscle artifact removal in ictal scalp-EEG based on blind source separation

Electroencephalogram (EEG) recordings are often contaminated with muscle artifacts. These artifacts obscure the EEG and complicate its interpretation or even make the interpretation unfeasible. This paper focuses on the particular context of extraction of low-voltage rapid ictal discharges from ictal scalp-EEG activity cantaminated by muscle artifact. In this context our aim was to evaluate the...

متن کامل

Extended leA Removes Artifacts from Electroencephalographic Recordings

Severe contamination of electroencephalographic (EEG) activity by eye movements, blinks, muscle, heart and line noise is a serious problem for EEG interpretation and analysis. Rejecting contaminated EEG segments results in a considerable loss of information and may be impractical for clinical data. Many methods have been proposed to remove eye movement and blink artifacts from EEG recordings. O...

متن کامل

Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling

This paper proposes an automatic method for artefact removal and noise elimination from scalp electroencephalogram recordings (EEG). The method is based on blind source separation (BSS) and supervised classification and proposes a combination of classical and news features and classes to improve artefact elimination (ocular, high frequency muscle and ECG artefacts). The role of a supplementary ...

متن کامل

Removing Electroencephalographic Artifacts : Comparison between Ica and Pca

Pervasive electroencephalographic (EEG) artifacts associated with blinks, eye-movements, muscle noise, cardiac signals , and line noise poses a major challenge for EEG interpretation and analysis. Here, we propose a generally applicable method for removing a wide variety of artifacts from EEG records based on an extended version of an Independent Component Analysis (ICA) algorithm 2, 12] for pe...

متن کامل

Extended ICA Removes Artifacts from Electroencephalographic Recordings

Severe contamination of electroencephalographic (EEG) activity by eye movements, blinks, muscle, heart and line noise is a serious problem for EEG interpretation and analysis. Rejecting contaminated EEG segments results in a considerable loss of information and may be imLractical for clinical data. Manv methods have been proposed to remove eye movement and blink" artifacts from EEG recordings. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016